Evaluating Advanced Power Plant Carbon Capture Technologies

Edward S. Rubin

Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania

Presentation to Global Climate and Energy Project Annual Meeting Stanford University October 15, 2014

The CMU Project Team

Outline of Talk

- Why the interest in carbon capture?
- Objectives and scope of this project
- Progress and findings to date
- Remaining tasks

Why the interest in carbon capture?

E.S. Rubin, Carnegie Mellon

Motivation for CCS

- Achieving global climate change goals will require <u>large</u> reductions in CO₂ emissions from power plants and other major sources of GHGs
- CCS is the <u>ONLY</u> way to get large CO₂ reductions from the fossil fuels that currently provide most of our energy—a potential bridging technology to a *sustainable* energy future
- CCS is a major component of cost-effective strategies for climate change mitigation—without it, global costs are trillions of dollars higher (IPCC)

Schematic of a Carbon Capture and Storage (CCS) System

Large-scale Demonstration Projects

- Sask Power Boundary Dam project (Canada)
- 110 MW coal-fired unit
- Post-combustion capture +EOR
- 90% capture (~ 1 Mt CO_2/yr)
- Now operating (Sept 2014)
- Southern Co. Kemper County IGCC project (Mississippi)
- 582 MW coal-fired unit
- Pre-combustion capture +EOR
- ~ 65% capture (3.5 Mt CO_2/yr)
- Startup in 2015
- E.S. Rubin, Carnegie Me

Cost of CCS for New Power Plants Using Current Technology

Increase in levelized cost for 90% capture			
Incremental Cost of CCS <u>relative to same plant type</u> without	Supercritical Pulverized Coal Plant	Integrated Gasification Combined Cycle Plant	Natural Gas Combined Cycle
% Increases in power generation cost (\$/kWh)*	~ 60–80%	~ 30–50%	~ 30–45%

Capture accounts for most (~80%) of the total cost

*Added cost to consumers will be much smaller, reflecting the CCS capacity in the generation mix at any given time. Retrofit of existing plants typically has a higher cost

R&D Programs Seek to Develop Lower-Cost Technologies

GCEP Projects on Advanced Carbon Capture Technologies

- In Fall 2011, GCEP issued RFP for advanced carbon capture and separation technologies and alternative processes that:
 - Have an excellent scientific basis rooted in the fundamentals;
 - · Enables a step-out or game-changing improvement;
 - Could have large global impact in a 10 to 50 year timeframe; and
 - Is on a pathway to meet or exceed all performance criteria listed in RFP.

• Three projects were selected for funding in 2012:

Capture Material	Application	Research Group	
Metal organic frameworks	Post-combustion	Northwestern University (R. Snurr, PI)	
New AC sorbents	Post-combustion	Stanford University (J. Wilcox, PI)	
Ionic liquids	Pre-combustion	University of Notre Dame (J. Brannecke, PI)	

Objectives and scope of this project

A Systems Analysis Framework for Technology Assessments

- In response to a subsequent GCEP RFP, our group at Carnegie Mellon was selected to provide a systems analysis framework that could be used to:
 - Quantify key performance metrics for carbon capture systems in the context of a complete power plant system
 - Perform case studies of GCEP-supported technologies
 - Allow comparative analyses of capture technology options
 - Identify if an approach "has the potential to be a breakthrough when applied in a full-scale power generation system"

Our Approach: Build on the IECM Framework

- A desktop/laptop computer simulation model developed for DOE/NETL
- Provides systematic estimates of performance, emissions, costs and uncertainties for preliminary design of:
 - PC, IGCC and NGCC plants
 - All flue/fuel gas treatment systems
 - CO₂ capture and storage options (pre- and post-combustion, oxycombustion; transport, storage)
- Free and publicly available at: <u>www.iecm-online.com</u>

E.S. Rubin, Carnegie Mellor

Integrated Environmental Control Model

IECM Modeling Approach

- Process Performance Models
- Engineering Economic Models
- Systems Analysis Framework
- Advanced Software Capabilities
 - · Probabilistic analysis capability
 - User-friendly graphical interface
 - Graphical analysis capabilities
 - Easy to add or update models

S. Rubin, Carnegie Mellon

4

Technologies Currently in IECM

Storage Systems*	Coal Con	bustion Plants	Plants (IGCC)	NGCC Plants
Post-Combustion Capture	Boiler/Turbine	Particulate Removal	Air Separation Unit	Gas Turbine
Conv. Amine; Adv. amines	Systems	Cold-side ESP; Fabric	Cryogenic	GE 7FA; GE 7FB
(FG+); Chilled ammonia;	Subcritical;	filter (Reverse air;		
Membrane systems; Aux.	Supercritical;	Pulse jet)	Slurry Preparation	Heat Recovery
NG steam or power gen.	Ultra-supercritical		& Coal Pretreatment	Steam Generator
(optional)		SO ₂ Removal		
	Furnace Firing	Wet limestone (Conv.;	Gasification	Steam Turbine
Oxy-Combustion Capture	Tangential; Wall;	F. oxidation;	Slurry-fed gasifier	
Flue gas recycle; ASU;	Cyclone	Additives); Wet lime;	(GE-Q); Dry-fed	Boiler Feedwater
Chemical processing units		Lime spray dry	gasifier (Shell)	System
	Furnace NOx		· · ·	
Pre-Combustion Capture	Control	Solids Management	Syngas Cooling and	Process Condensate
Water gas shift + Selexol	LNB; SNCR;	Ash pond; Landfill;	Particulate Removal	Treatment
-	SNCR+LNB;	Co-mixing; useful		
CO ₂ Compressor	Gas reburn	byproducts	Mercury Removal	Cooling Water
			Activated carbon	System
CO2 Transport	Flue Gas NOx	Cooling and		Once-through; Wet
Pipelines (6 U.S. regions);	Removal	Wastewater Systems	H ₂ S Removal	cooling tower; Dry
Other (user-specified)	Hot-side SCR	Once-thru cooling;	Selexol; Sulfinol	cooling
		Wet cooling tower;		-
CO ₂ Storage	Mercury Removal	Dry cooling;	Sulfur Recovery	Aux. Equipment
Deep saline formation;	Carbon/sorbent	Chemical treatment;	Claus plant; Beavon-	
Geol.Storage w/ EOR;	injection	Mech. treatment	Stretford unit	
Other (user-specified)	-			
*Additional capture option combustion (PC or NGCC	ns under developme plants), a chemical	nt include solid sorbent looping system for IGC	and calcium looping sy C, and an advanced ox	stems for post- y-combustion syster

GCEP Criteria for Advanced Carbon Capture Systems

We are working with the three GCEP-funded research teams to develop process performance and cost models that can be used to assess new process concepts relative to specific GCEP criteria:

- Capture and separate \geq 90% of power system CO₂
- Energy penalty $\leq 10\%$ of overall power system output
- Minimal lifecycle environmental impacts and water demand
- Uses only earth-abundant and non-toxic constituents
- Incremental cost \leq 15% of overall power system cost
- Reliability comparable to other power plant components
- Lifetime equal to the associated energy generation system
- Potential for low-cost integration & deployment at large scale

E.S. Rubin, Carnegie Mellon

Performance models

E.S. Rubin, Carnegie Mellon

Capture Materials Modeled

- All university research groups are still developing their novel capture materials
- For preliminary analysis we use surrogate materials suggested by each of the GCEP research groups:
 - MOFs: Zeolitic Imidazolate Frameworks (ZIF-78); also, Mg_2 -(dobdc) – MOF-74 鐐
 - Activated Carbon: SU_AC

• Ionic Liquids: 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N])

PSA/VSA Process Model*

- Simplified Skarstorm cycle model with three steps:
 - Pressurization (adsorption)
 - Feed (adsorption)
 - Blowdown (desorption)

• Atmospheric pressure adsorption, vacuum pressure desorption

- Equilibrium conditions
- Cyclic steady state
- Single-stage operation
- Flue gas = $CO_2 + N_2$

Pressurization Feed Adsorber Regenerator Biowdown Feed Group peer plant Following Biower Vacuum Biower

*Based on: Maring and Webley, IJGGC, 2013.

Results for Single-Stage VSA Model (based on ZIF-78 at 50°C)

7

Preliminary Case Study

(modeled using IECM v.8.0.2)

• Base Power Plant

- 650 MW_{gross}, supercritical PC unit
- Appalachian medium sulfur coal
- Thermal energy input: 1564 MW_{th}
- 11,310 kmol/hr CO_2 in flue gas (12% by volume)
- CO₂ capture using ZIF-78 with VSA
 - 90% CO₂ capture, single stage
 - Isothermal at 50°C
 - Adsorption pressure = 1.2 bar
 - Desorption pressure = 0.01 bar
 - CO₂ product pressure =135 bar

E.S. Rubin, Carnegie Mello

Preliminary Case Study Results

Performance Parameter	Base Plant	1-stage VSA with ZIF-78	Baseline Amine
Thermal energy input (MW _{th})	1564	1564	1564
Capture unit power (%MW _g)		9.2 (60 MW)	
Compression from vacuum to pipeline pressure (%MW _g)		22.8 (148 MW)	
Net power out (MW)	608	401	440
Net plant efficiency (%HHV)	39	26	28
Product purity (%)		70	99

<u>NEXT STEP</u>: Model a more complex two-stage process design to achieve higher efficiency and product purity

S. Rubin, Carnegie Mellon

Pre-combustion capture using ionic liquids

Solvent Properties

Property	Ionic Liquids	Selexol
chemical	Salts	DMPEG
licensor	n/a	UOP
absorption type	physical	physical
viscosity (mPa.s)	20-1000	5.8
density (kg/m ³)	800-1500	1030
molar mass (g/mol)	200-750	280
vapor pressure (mmHg)	0.000001	0.00073
freezing point (°C)	-140 to 180	-28
boiling point (°C)	>250	275
max. operating temp. (°C)	depends on stability	175
operating pressure	high	high
Δabs. H (kJ/mol CO ₂)	-10 to -20	-14.3
CO ₂ solubility (m ³ /m ³)	>2.51	3.63
CO ₂ /H ₂ selectivity	50-150	77
CO ₂ /CH ₄ selectivity	8-35	15
CO ₂ /H ₂ S selectivity	2-10	8.8

E.S. Rubin, Carnegie Mellon

Source of ILdata: Ramdin, M et al. IECR. 2012.

S. Rubin, Carnegie Mellon

Process Configuration for Pre-combustion CO₂ Capture

[hmim][Tf2N] Capture of $\dot{CO_2}$ and $\ddot{H_2}$ in a Binary System 12000 →298.15 K 10000 +313.15 K 12000 + 373.15 K + 413.15 K 8000 10000 +313.15 K 6000 ☆333.15 K 8000 ÷353.15 K Pres 4000 6000 2000 ë 4000 0% 40% 60% 20% 2000 CO2 mole% in [hmim][Tf2N] 1% 2% 3% 4% 5% 0% 6% H₂ mole% in [hmim][Tf₂N]

Preliminary Case Study (modeled using IECM v.8.0.2)

- Base Power Plant
 - 651 MW_o IGCC plant
 - 26,500 kmol/hr syngas (32% CO₂ , 68% H₂)
- 90% CO₂ capture using IL (vs. Selexol)
 - Absorber: Temp = 30C, Pressure = 3000 kPa
 - Flash Drum Pressures for Stripping: high = 1000 kPa , medium = 500 kPa, low = 100 kPa
 - Flash temperature = 30C
 - Equipment Efficiency: compressor = 80%, pump =75%, hydraulic turbine = 80%
 - CO₂ product pressure =135 bar
 - 2 trains

A Multistage Equilibrium Process Model for Gas Absorption

• A multistage equilibrium process model is used to simulate the absorption process, including mass balance (M), equilibrium (E), summation (S), and enthalpy balance (H).

• Mass transfer in gas absorption is estimated using empirical correlations from Billet and Schultes (1993).

S. Rubin, Carnegie Mell

Case Study Results

Performance Parameter	IL-based CO ₂ capture	Selexol-based CO ₂ Capture
Solvent Pumping Power $(\% MW_g)$	2.2 (14.5 MW)	
Process Compression Power $(\% MW_g)$	1.4 (8.8 MW)	
Hydraulic Turbine Power Recovery Credit (%MW _g)	1.6 (10.2 MW)	
CO_2 Product Compression Power (%MW _g)	4.5 (29.3 MW)	
Total Capture Power (%MWg) (excluding effect of shift reactor)	6.5 (42.5 MW)	7.3 (47.8 MW)
CO ₂ Product Purity (%)	99	99

Sensitivity Analysis (1)

Preliminary Conclusions Related to Process Performance

- Novel sorbent materials should seek <u>high selectivity</u> to achieve high capture efficiency and high purity
- Data are needed on sorbent behavior in the presence of water and impurities such as sulfur
- Mixed gas isotherms are needed to give more accurate performance estimates

Process Cost Models

Cost Models for New Technologies are Under Development

• CAPITAL COSTS

- Direct equipment costs
- Indirect costs (related to PFC)
 - General facilities capital
 - Engineering & home office fees
 - Process contingency cost
 - Project contingency cost
 - Interest during construction
 - Preproduction (startup) cost
 - Royalty fees
 - Inventory capital
- Total Capital Requirement

E.S. Rubin, Carnegie Mellon

- O&M COSTS
 - Variable costs
 Chemicals
 - Fuels
 - Waste disposal
 - Byproduct credits
 - Other
 - Fixed costs
 - Labor
 - Maintenance
 - Total O&M Cost
- Financial Factors

The Challenge for New Technologies: Typical Cost Trend of a New Technology

Preliminary Conclusions Related to Process Cost

- Novel processes for CO₂ capture should seek to <u>minimize capital cost</u> via process simplifications, reduced vessel size and materials requirements
- <u>Tradeoffs</u> between cost and performance can be important in designing "best" new systems for carbon capture

Future Work (in progress)

GCEP Project Tasks

- Task 1: Review literature and material properties data.
- Task 2: Formulate capture process designs.
- Task 3: Formulate thermodynamic process models.
- Task 4: Develop reduced-order performance models (as needed).
- Task 5: Formulate technology-level cost models.
- Task 6: Conduct initial techno-economic assessments.
- Task 7: Refine capture technology models; test in alternative plants
- Task 8: Characterize uncertainty/variability of key process parameters.
- Task 9: Develop LCA capability for CO₂ capture system and materials.
- Task 10: Assess plant-level attributes and targets.
- Task 11: Conduct comparative case studies.
- Task 12: Document and disseminate project results.

E.S. Rubin, Carnegie Mellon

